
Object Oriented Software 
Frameworks

Jim Kowalkowski



Framework Terms

Module: An object (in C++) that “plugs” 
into a processing stream and performs 
a specific task, without knowledge of 
how other modules work. 

Framework: A object that creates, 
configures, and invokes modules in a 
sequence defined by the user at run 
time, without recompilation



What Does a Framework Do?

• Encapsulates a task within a module, 
such as a single reconstruction 
algorithm

• Enforces uniform configuration

• Centralizes common tasks

– Reading, generating, and writing events

– Managing database information

• Allows easy substitution of modules



Where Does it Apply?

• The event filter farm

• Simulation

• Offline reconstruction

• Trigger simulator

• First order analysis



Benefits of a Framework

• Developers do not need to know as 
many details about routine things

• Reduction of cut and paste coding and 
repetitive task coding

– Reduced maintenance

– Ability to upgrade in the future

• Compiler helps spot problems



Benefits Continued…

• Reduced development time

• Increased productivity

– Configuration it similar

– Running canned algorithm requires no 
code development

• Global and well defined handling of 
errors, timing, database, and memory



A Good Framework Will…

• Allow the development to focus on only the 
problem they are trying to solve

• Put low requirements on modules

• Make it easy to configure algorithms and jobs

• Enforce uniformity amongst applications

• Promote good use of C++

– Exception handling

– “construction is resource acquisition” idiom



A Good Framework Provides

• Classes that are specific to a single 
task

• Low coupling to services

• Ability to change dispatcher without 
affecting user code

• Low requirements to participate

• Flexibility and extendibility



Benefits of Consistency

• Applications work together

• Easier for developers to run all the 
various applications

• Mixing modules and applications works 
without using binding code or scripts



Inconsistency Consequences

• Producing disparate applications reduces 
productivity

– Code for services repeated

• Interchange formats required

– Time consuming to run

– Time consuming to maintain

• Less overall code understanding

• Localized experts

• Adds rigidity to the system



Consequences of Limited Use

• Level 3 at DØ
– Code needs to run in two frameworks

– Two infrastructures to maintain

• GEANT4 independent of framework
– Own concept of event, data objects

– Translations required or carrying GEANT

– Configuration dissimilarities

• Level 2 muon trigger simulator
– Differing philosophies

– Large amount of binding code



What Is Needed Early On?

• Clear concept of what a module is

• Configuration and algorithm parameter 
management

• Protocol for data exchange (EDM) 

• Understanding of how conditions data 
will be treated and accessed 
(calibration, geometry, alignment, etc.)

• Requirements on sequencing



Early Goals for Design

• Defining module interfaces

• Error Logging and reporting

• Recovery and restart capabilities
– Progress tracking

• Simple scheduling or sequencing

• Interactivity requirements

• Defining interfaces to database 
information



A Few Requirements

• Dynamic loading of modules (explicit and 
implicit)

• Sequences and subsequences which events 
flow through

• Intelligent propagation and handling of 
exceptions, messages, and program aborts

• Timing, memory leak checking

• Modules will be created with a sane state

• Module instances creates at runtime, as 
needed



More requirements

• No interactions between modules 
except through the event data

• Pick and choose active modules at run 
time

• Support multiple instances of modules

• Developer picks the functions of the 
module (reconstruction, filtering, 
analysis, display, run boundary 
processing)



Module Coding Guidelines

• No caching event data between events

• No global variables

• Do not use or contact other modules 
directly

• Do not cast away const-ness

• No circular dependencies

• No super modules that do everything



Problem Areas

• Event Display integration

• Scripting or interactive prompt

• Integration of simulation engine

Each competes for control of the main 
“event loop” or thread of control, each 
can put requirements on modules and 

data



Addressing these Areas

• Decide on the necessary requirements

• Consider multi-threading

– Complex to produce infrastructure

– Efficient solution to multiple event loops

• Consider multi-process

– Interprocess communication is less efficient

– Solves versioning and upgrade problems 
with libraries such as the event display



Some Observations with C++

• Configuring and running an executable that is 
already compiled is the easiest and safest 
thing to do

• Linking together a set of libraries to build a 
new executable is more difficult, requires 
time and build system knowledge

• Compiling a library and building an 
executable is the most error prone and time 
consuming process



Example Header (simplified)

Class TrackReco {

Public:
TrackReco(const ConfigurationData& parms, Registry&);

~TrackReco();

Directive reconstructEvent(Event& e);

Directive analyzeEvent(const Event& e);

Directive runStart(const RunInfo& I);

Void Reconfigure(const ConfigurationData&);

Private: …

}



Example Implementation

TrackReco::TrackReco(const ConfigurationData& d, 
Registery& r) {

r.subscribe(“event reco”,reconstructEvent);

r.subscribe(“event analysis”,analyzeEvent);

r.subscribe(“run init”,runStart);

…

double thresold = d.getDouble(“thresold”);

}

RegisterModule(TrackReco,”V1.0”)



Notes:

• Division of labor is important – testing out 
algorithms or supporting multiple types for 
the same purpose is important

– Want to reuse certain information in all the 
algorithms without reproducing or copying the 
code (hits or clusters in silicon or drift chambers).

– Want to do the same analysis after the algorithms 
are run

• (arguments against super modules)


